Max Planck Gesellschaft
Max Planck Gesellschaft


in press | discussions

2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010

1Ahrens, B., Hansson, K., Solly, E., Schrumpf, M. (2014). Reconcilable differences: a joint calibration of fine-root turnover times with radiocarbon and minirhizotrons. New Phytologist, 204(4), 932-942. doi:10.1111/nph.12979.
2Akita, L. G., Frenzel, P., Haberzettl, T., Kasper, T., Wang, J., Reicherter, K. (2014). Ostracoda (Crustacea) as indicators of subaqueous mass movements: An example from the large brackish lake Tangra Yumco on the southern Tibetan Plateau, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 419, 60-74. doi:10.1016/j.palaeo.2014.08.003.
3Arnold, S., Kailichova, Y., Knauer, J., Ruthsatz, A. D., Baumgartl, T. (2014). Effects of soil water potential on germination of co-dominant Brigalow species: Implications for rehabilitation of water-limited ecosystems in the Brigalow Belt bioregion. Ecological Engineering, 70, 35-42. doi:10.1016/j.ecoleng.2014.04.015.
4Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca, M., Mu, M., Saatchi, S., Santoro, M., Thurner, M., Weber, U., Ahrens, B., Beer, C., Cescatti, A., Randerson, J. T., Reichstein, M. (2014). Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature, 514, 213-217. doi:10.1038/nature13731.
5Dibbern, D., Schmalwasser, A., Lueders, T., Totsche, K. (2014). Selective transport of plant root-associated bacterial populations in agricultural soils upon snowmelt. Soil Biology and Biochemistry, 69, 187-196. doi:10.1016/j.soilbio.2013.10.040.
6Dietze, E., Maussion, F., Ahlborn, M., Diekmann, B., Hartmann, K., Henkel, K., Kasper, T., Lockot, G., Opitz, S., Haberzettl, a. T. (2014). Sediment transport processes across the Tibetan Plateau inferred from robust grain size end-members in lake sediments. Climate of the Past, 10, 91-106. doi:10.5194/cp-10-91-2014.
7Dippold, M. A., Boesel, S., Gunina, A., Kuzyakov, Y., Glaser, a. B. (2014). Improved d13C analysis of amino sugars in soil by ion chromatography–oxidation–isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 28(6), 569-576. doi:10.1002/rcm.6814.
8Forkel, M., Carvalhais, N., Schaphoff, S., Bloh, W. v., Migliavacca, M., Thurner, M., Thonicke, K. (2014). Identifying environmental controls on vegetation greenness phenology through model-data integration. Biogeosciences, 11(23), 7025-7050. doi:10.5194/bg-11-7025-2014.
9Gunina, A., Kuzyakov, Y. (2014). Pathways of litter C by formation of aggregates and SOM density fractions: Implications from 13C natural abundance. Soil Biology and Biochemistry, 71, 95-104. doi:10.1016/j.soilbio.2014.01.011.
10Günther, F., Thiele, A., Gleixner, G., Xu, B., Yao, T., Schouten, S. (2014). Distribution of bacterial and archaeal ether lipids in soils and surface sediments of Tibetan lakes: Implications for GDGT-based proxies in saline high mountain lakes. Organic Geochemistry, 67, 19-30. doi:10.1016/j.orggeochem.2013.11.014.
11Heimann, M., Schulze, E. D., Winderlich, J., Andreae, M. O., Chi, X., Gerbig, C., Kolle, O., Kübler, K., Lavric, J. V., Mikhailov, E., Panov, A., Park, S.-B., Rödenbeck, C., Skorochod, A. (2014). The Zotino Tall Tower Observatory (Zotto): Quantifying large scale biogeochemical changes in Central Siberia. Nova Acta Leopoldina NF, 117(399), 51-64.
12Lange, H., Boese, S. (2014). Recurrence quantification and recurrence network analysis of global photosynthetic activity. In C. L. Webber, N. Marwan (Eds.), Recurrence Quantification Analysis: Theory and Best Practices (pp. 349-374). Cham [u.a.]: Springer.
13Lauterbach, S., Witt, R., Plessen, B., Dulski, P., Prasad, S., Mingram, J., Gleixner, G., Hettler-Riedel, S., Stebich, M., Schnetger, B., Schwalb, A., Schwarz, A. (2014). Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years. The Holocene, 24(8), 970-984. doi:10.1177/0959683614534741.
14Marra, D. M., Chambers, J. Q., Higuchi, N., Trumbore, S. E., Ribeiro, G. H. P. M., Santos, J. d., Negrón-Juárez, R. I., Reu, B., Wirth, C. (2014). Large-scale wind disturbances promote tree diversity in a Central Amazon Forest. PLoS One, 9(8): e103711. doi:10.1371/journal.pone.0103711.
15Marra, D. M., Pereira, B. S. A., Fagg, C. W., Felfili, J. M. (2014). Trees and environmental variables influence the natural regeneration of a seasonally dry tropical forest in Central Brazil. Neotropical Biology and Conservation, 9(2), 62-77. doi:10.4013/nbc.2014.92.01.
16Milcu, A., Roscher, C., Bachmann, D., Gockele, A., Guderle, M., Landais, D., Piel, C., Escpape, C., Devidal, S., Ravel, O., Buchmann, N., Gessler, A., Gleixner, G., Hildebrandt, A., Roy, J. (2014). Functional diversity of leaf nitrogen concentrations drives grassland carbon fluxes. Ecology Letters, 17(4), 435-444. doi:10.1111/ele.12243.
17Ribeiro, G. H. P. M., Suwa, R., Marra, D. M., Lima, A. J. N., Kajimoto, T., Ishizuka, M., Higuchi, N. (2014). Allometry for juvenile trees in an Amazonian forest after wind disturbance. Japan Agricultural Research Quarterly, 48(2), 213-219.
18Solly, E., Schöning, I., Boch, S., Kandeler, E., Marhan, S., Michalzik, B., Müller, J., Zscheischler, J., Trumbore, S. E., Schrumpf, M. (2014). Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant and Soil, 382, 203-218. doi:10.1007/s11104-014-2151-4.
19Urban, M., Forkel, M., Eberle, J., Hüttich, C., Schmullius, C., Herold, M. (2014). Pan-arctic climate and land cover trends derived from multi-variate and multi-scale analyses (1981–2012). Remote Sensing, 6(3), 2296-2316. doi:10.3390/rs6032296.
20Urban, M., Forkel, M., Schmullius, C., Hese, S., Hüttich, C., Herold, M. (2014). Identification of land surface temperature and albedo trends in AVHRR pathfinder data from 1982 to 2005 for northern Siberia. International Journal of Remote Sensing, 34(12), 4491-4507. doi:10.1080/01431161.2013.779760.
21von Buttlar, J., Zscheischler, J., Mahecha, M. D. (2014). An extended approach for spatiotemporal gapfilling: dealing with large and systematic gaps in geoscientific datasets. Nonlinear Processes in Geophysics, 21, 203-215. doi:10.5194/npg-21-203-2014.
22Zscheischler, J., Mahecha, M. D., von Buttlar, J., Harmeling, S., Jung, M., Rammig, A., Randerson, T. J., Schölkopf, B., Seneviratne, I. S., Tomelleri, E., Zaehle, S., Reichstein, M. (2014). A few extreme events dominate global interannual variability in gross primary production. Environmental Research Letters, 9(3): 035001. doi:10.1088/1748-9326/9/3/035001.
23Zscheischler, J., Michalak, A. M., Schwalm, C., Mahecha, M. D., Huntzinger, D. N., Reichstein, M., Berthier, G., Ciais, P., Cook, R. B., El-Masri, B., Huang, M., Ito, A., Jain, A., King, A., Lei, H., Lu, C., Mao, J., Peng, S., Poulter, B., Ricciuto, D., Shi, X., Tao, B., Tian, H., Viovy, N., Wang, W., Wei, Y., Yang, J., Zeng, N. (2014). Impact of large-scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data. Global Biogeochemical Cycles, 28(6), 585-600. doi:10.1002/2014GB004826.
24Zscheischler, J., Reichstein, M., Harmeling, S., Rammig, A., Tomelleri, E., Mahecha, M. D. (2014). Extreme events in gross primary production: a characterization across continents. Biogeosciences, 11(11), 2909-2924. doi:10.5194/bg-11-2909-2014.
25Zscheischler, J., Reichstein, M., von Buttlar, J., Mu, M., Randerson, J. T., Mahecha, M. D. (2014). Carbon cycle extremes during the 21st century in CMIP5 models: Future evolution and attribution to climatic drivers. Geophysical Research Letters, 41(24), 8853-8861. doi:10.1002/2014GL062409.
Directions | Disclaimer | Data Protection | Contact | Internal | Webmail | Local weather | PRINT | © 2011-2019 Max Planck Institute for Biogeochemistry